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Clustering through postinhibitory rebound in synaptically coupled neurons
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Postinhibitory rebound is a nonlinear phenomenon present in a variety of nerve cells. Following a period of
hyperpolarization this effect allows a neuron to fire a spike or packet of spikes before returning to rest. It is an
important mechanism underlying central pattern generation for heartbeat, swimming and other motor patterns
in many neuronal systems. In this paper we consider how networks of neurons, which do not intrinsically
oscillate, may make use of inhibitory synaptic connections to generate large scale coherent rhythms in the form
of cluster states. We distinguish between two caeewhere the rebound mechanism is due to anode break
excitation and(ii) where rebound is due to a slow T-type calcium current. In the former case we use a
geometric analysis of a McKean-type model to obtain expressions for the number of clusters in terms of the
speed and strength of synaptic coupling. Results are found to be in good qualitative agreement with numerical
simulations of the more detailed Hodgkin-Huxley model. In the second case we consider a particular firing rate
model of a neuron with a slow calcium current that admits to an exact analysis. Once again existence regions
for cluster states are explicitly calculated. Both mechanisms are shown to prefer globally synchronous states
for slow synapses as long as the strength of coupling is sufficiently large. With a decrease in the duration of
synaptic inhibition both systems are found to break into clusters. A major difference between the two mecha-
nisms for cluster generation is that anode break excitation can support clusters with several groups, while slow
T-type calcium currents predominantly give rise to clusters of just(&wisynchronouspopulations.
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I. INTRODUCTION neurons upon release from inhibition. This particular current

Recordings from nerve cells demonstrate that if the poteniS Known to play an important role within the context of

tial at the cell body is increased above a certain threshol&"a"?}'””c}zcc’rtic"":c ohscillation[slg)lilﬂ. he exi ¢ on
value, then a pulselike signal can be initiated along the out- | N€ focus of this paper will be on the existence of phase-

going axon. In addition to the action potential, one othe clustered states as a function of the speed and strength of

important nonlinear phenomenon in a variety of nerve celldnhiPitory synaptic interaction in networks of globally

is post inhibitory reboundPIR). Here the excitability of the COUPIed neurons. Such states are a collection of subpopula-

neuron is enhanced temporarily following a period of voltaget'?]nS W'th'nha n_etv(\gork ea;:h of Wh'crl'\l COhSrI]StS of a fully
depressionhyperpolarization. As a result the neuron may Fc)e?nsee ds\mﬁ trr?gléfr o nzetc c?u pﬂﬁ;rg?zl e rr?éit; taht a\t,vgoarrlf)t?gfl-
grgs?izmgli?orsyplr:bglrjr? dpr?gls(ett)eoefnsgﬁgﬁr}’ gxg](fr%/mbeurrglly ttrms[cally oscillate. As such this work is complementary to

. . ; revious important studies of globally coupled phase-
play an important rol_e in central pattern generating n_etwork scillators, such as by Golone al. [12], Hanselet al. [13],
that produce rhythmic outpyti—4], as well as providing a

. ' 4 and Okudd14], relevant for networks of weakly interacting
neural mechanism for the extraction of temporal cues in huggcijators.

man speecfb]. The theoretical importance of post inhibitory |5 Sec. 1| we consider the Hodgkin-Huxley model of an
rebound for central pattern generation in networks ofexcitable membrane and its reduction to a planar dynamical
nonoscillatory neurons was perhaps first recognized by Pekystem. This more easily allows us to describe the phenom-
kel and Mulloney{6], although dates back to work by Brown enon of anode break excitation using geometric notions. The
[7] on so-called half-center oscillators. In certain nerve cellsequations of motion of the reduced Hodgkin-Huxley model
such as those of the medicinal leech, the ionic mechanism fare then approximated in a piecewise linear fashion to obtain
post inhibitory rebound has been uncovef8¢®). It is im-  a single neuron model of McKean-typ&5]. Under the as-
portant to note, however, that many excitable models of neusumption of a separation of time scales for the voltage and
ral membrane, such as the Hodgkin-Huxley and FitzHugh+ecovery variables of thisnodified McKean model we are
Nagumo model, are known to exhibit a form of postable to exactly quantify the PIR response of the neuron to an
inhibitory rebound that is more properly called anode-breaknhibitory step input. This analysis forms the basis for a sub-
excitation. Thus it becomes interesting to distinguish besequent network study with global inhibitory synaptic con-
tween mechanisms for rebound based upon the basic mechaections of simple on/off type. Analytical expressions for the
nism of anode break excitatiqgommon to many excitable existence of phase-clustered states are obtained in the singu-
neuron modelsand novel ionic currents that do not form lar limit and shown to be in good qualitative agreement with
part of the make-up of minimal models of excitable mem-simulations of a Hodgkin-Huxley network.

brane. Specifically we are interested in the slow T-type cal- In Sec. Ill we consider a spiking neuron model, possess-
cium current known to underly bursting behavior in singleing a slow T-type calcium current, that can support a rebound
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spike burst in response to an inhibitory synaptic current. For
slow synaptic inhibition we are able to formulate network
dynamics in terms of a firing rate model. An exact analysis
of this model is possible for a Heaviside firing rate function
and is used to calculate the regions in parameter space where
cluster states exist. In comparison to Sec. Il we do not ex-
plicitly exploit any underlying geometric features of the dy-
namics and are able to consider a more general class of syn-
aptic response functions.

Finally, in Sec. IV we discuss the similarities and differ-
ences between cluster states generated by the two mecha-
nisms discussed in this paper.

Il. ANODE BREAK EXCITATION FIG. 1. (Color online The phase-plane for the reduced

. . . Hodgkin-Huxley model obtained by the method of equivalent po-
In the Hodgkin-Huxley model of excitable nerve t'ssuetentials. The straight diagonal line is twenulicline, w=v, while

the membrane current arises mainly through the conductiof, . 1o “cubic” curves are the nullclines with =0 andl =-4. The
of sodium and potassium ions through voltage dependenfses shows the rebound spike that arises when the fixed point with

channels in the membrari&6]. The contribution from other |=_4 ig abruptly removed, by settirig-0.
ionic currents is assumed to obey Ohm’s law. In fact the
Hodgkin-Huxley dynamics is considered to be a function of
membrane potential and three time and voltage dependent E{M} + E{M]
conductance variables, n, andh: (0.W) = dh (V) an 7,(v)
do g f dhw) | of dnw) '
Pt = F(v,mn,h) dh, dw  dn, dw

= - g (v —v) = gen*(v = vK)— GNP (L — vy +1. (4)

1) and dF/oh and dF/dn are evaluated ah=h,(w) and n

Here, u is the membrane capacitanag, gy, andg, are  =N.(W). The variablev corresponds to a membrane potential
constants an®/,, Vi, andV,, represent the constant mem- while w is associated with the refractory properties of a neu-
brane reversal potentials associated with the leakage, pota®n. One natural consequence of this reduction is that the
sium, and sodium channels, respectivelys an externally —nulicline for w (defined byw=0) is the straight linew=v.
injected current. The conductance variabiga, andh take  The voltage nullcline has a moceibicshape, as expected for
values between 0 and 1 and approach the asymptotic valu@smnodel of excitable membrane. A plot of the phase-plane for
m.(v), n.(v), and h.(v) with time constantsr(v), 7,(v), this model is given in Fig. 1. It is convenient to discuss the

and 7,(v), respectively. Summarizing, we have that “cubic” nullcline in terms of left, middle and right hand
branches. Wheh=0 the fixed point falls on the left hand

Tx(v)d_x =X, (v)-X, Xe{mnh}. ) branch and is stable. With increasihghe fjxed point can .

d become unstable and moves on to the middle branch. As it

goes unstablgin a Hopf-bifurcation one sees the appear-
ance of a stable periodic orbit. However, our interest is in the
esponse of the system to inhibitory input. Consider for the

) moment a negative value bkuch that the fixed point moves
Hodgkin-Huxley-type models has been proposed by Abbot, hyperpol%rized valugwith respect to the cpase when

[1.7]' called the methqd odquivalent pote_ntlalsWe may use =0). Since this fixed point is also stable it will remain there
this approach to obtain a reduced two-dimensional version 0'1‘

. D . or all time. However, an abrupt removal of this inhibition
the Hodgkin-Huxley model that can be readily investigated, b

ith the tools of bh | vsi q v 1 eads to a rebound spike: to equilibrate back to the fixed
Wi € 100iS of phase-plane analysis and geometry. in esﬁoint the system makes a transition to the right-hand branch,
sence this approach makes use of the factthat) is small

i : i . as illustrated in Fig. 1, before jumping back to the left-hand
for all v so that the variablen rapidly approaches its equi- panch and relaxing to the fixed point for0. We see that
librium value m..(v). Moreover, the equations fdr andn e systematic reduction of the Hodgkin-Huxley model to the
have similar time-courses, so that they may si@vedto-  piane is a natural way in which to uncover the geometric
gether via a so-called equivalent potential, The result of  achanism underlying anode break excitation. The mecha-
this procedure is a two dimensional model with membrang,ism of anode break excitation is clearly dependent on the

The six functionsrg(v) andX.(v), X e {m,n, h}, are obtained
from fits with experimental datégiven in the Appendix
A systematic approach for reducing the dimension o

currentf(v,w) =F(v,m.(v),n(W) ,h..(w)), such that overall cubic shape of the nullcline, but is independent of
n dw any detailed structure. Hence, further insight is likely to
e fo,w) +1, P g(v,w), (3)  come from a simpletyet similap choice of this shape. We
note from Fig. 1 that the main effect of an inhibitory drive is
where to simply reduce the minima of thenullcline while leaving
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Vi Vi a . tem has nuliclines defined by—-wy=f(v;l) andw=v. The
/ W, case when the fixed point is such that v, is said to define
s 1 the excitable regime. It is convenient to keep track of which
branch of the nonlinear functiof¥) is playing a role in the
55 | ] dynamics. If the time scale for the dynamics is fast com-
w pared to the time-scale for thve dynamics(i.e., in the limit
as u—0), thenv spends no appreciable time off of the
-65 ya W, nullclines forv =0. Whenv <v; we shall say that the system
is on the left-hand branctw-wy=(vg—v)/By(l) and when
75 , , , v>v, the system is on the right-hand branai=wy=(v,
-80 -40 v 0 40 —v)/ B4. In this case the slow dynamics takes the form
, . . Ao(l) = vo(hw v <wvy,
FIG. 2. (Color online The phase-plane for the modified McK- w= {A _ < 9
ean model, withv nuliclines plotted fol =0 andl =-4. Also shown 17 YW vl

is a rebound spike created by removing inhibition from the rest statgyhere YoX)=1+Bo(X), y1=1+B1, Ag(X)=vo+Bo(X)Wo, A;

with I=.—4. ©=0.01,w(x)=4 log(1+x/4.75 and other parameters =v,+BW, and we have adopted the notatieve dw/dt.

as in Fig. 1. Note that a necessary condition for anode break excitation
within this model is that the fixed point on the left branch be

other parts of the curve relatively unchanged. From the delower than the minima with=0, i.e.,Ay(1)/ (1) <w;,. Net-

sire to work with a mathematically tractable model that cap+works of weakly coupled oscillatory McKean neurons have

tures the essential features of the Hodgkin-Huxley model weyreviously been discussed ji8,19. We shall now pursue

therefore introduce the following choices féfv,w) and the case of strong inhibitory coupling and the emergence of

g(v,w): network rhythms that can coexist with a stable quiescent
network state.

fo.w) +1=f(w31) = w+wp, ®) At a synapse presynaptic firing results in the release of
_ neurotransmitters that cause a change in the membrane con-
gv,w)=v-w, ®  ductance of the postsynaptic neuron. This postsynaptic cur-
where rent may be written
= =vlBo(l) v<uy, 1(t) = (s~ v)u(t), (10)
f(v;1) =) (—-vy/B() V1I<US<U,y, (7)  wherev is the voltage of the postsynaptic neuron ands
—w-v)IBy  v>v, the membrane reversal potential. The variabrresponds

to the probability that a synaptic receptor channel is in an
Parameters of this model are easily fit to the reduceghpen conducting state. This probability depends on the pres-
Hodgkin-Huxley model and have a natural physical interpreence and concentration of neurotransmitter released by the
tation as points of maxima and minima of thenulicline or presynaptic neuron. The sign @Jre|ative to the steady state
gradients on the left, middle, and right branches. This is mosfesting potentialp., determines whether the synapse is ex-
easily described with the aid of the plot in Fig. 2. Here wecitatory (v,>v<d or inhibitory (vs<v<). In this paper we
have set3;=3 and will regard the post-synaptic conductance as a train of pulses,
each one induced by the arrival of a presynaptic action po-

V1~V Uy~ U . ;
Bo(x) = Woi—Wj_?X)’ B(x) = m, (8) tential at a timeT™(me 7):
with We=-42.5, w,=-65.2, v,=—76.0, v;=-63.7, v, U(t):% p(t=T"). (11)

=-19.5. The functiorw;(x) =w; +w(x), describes how much

the minima ofv is perturbed by a constant current injection. The arrival times are calculated according to a voltage jump

A detailed comparison with the reduced Hodgkin-Huxleycondition in the presynaptic neuron, which we shall take to

model suggests a choice such wa$x)=4 log(1+x/4.75  occur as the neuron makes a transition from the left to right

(x<0). However, for the sorts of mechanistic questions webranch of thev nulicline. The shape of the post synaptic

are interested in simpler choices, sucwé®)=x, are equally ~ conductance is given by the functioyit)(7(t)=0,t<0). So

as valid. We call the above the modified McKean modelthat simple geometric arguments can be used we shall con-

since it has piecewise linear nuliclines, as does the originagider on/off type synapses of the form

McKean mode[15]. However, we take more care in obtain- _ -1_

ing an approximation of the Hodgkin-Huxley model by fit- 70 =600 -, (12

ting to the properties of the reduced Hodgkin-Huxley modelHere a1 is the duration of a rectangular pulgg,its strength
Mathematical progress in quantifying anode break excitaand®(t) is a Heaviside step function. We shall also focus on

tion for this model can be made under the simplifying as-the case of strong inhibition so thai—v~=uvy, (i.e., we drop

sumption of fast relaxation which allows one to use some othe effects of shunting For a globally coupled network df

the tools of geometric singular perturbation theory. The sysneurons we consider the natural extension
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N
J

i) =-=> 2 0(t-TNO(a-t+T", (13

Nj=1 m
15 |
whereJ=-gws>0 andl;(t) is interpreted as the input to the
ith neuron, withi=1,... N. o 1+
For a globally coupled network the symmetry to permu-
tations implies the existence of a homogeneous solution.

0.5

This could either be a homogeneous fixed pgHEP), in 1 M=1

which all neurons in the system remain at rest or a homoge- (

neous limit cycle(HLC), in which all neurons oscillate syn- 0 :

chronously. This latter solution is what we shall refer to as a 0 5 10 15 20 25

single cluster state. It is also possible that other cluster states

yvill arise through a process of spontaneo_us symmet'ry brgak- FIG. 3. (Color onling A plot of the critical curvesa(M) as a
ing. The most symmetric Cluste_r S_tates will be ones in Wh'cn‘unction ofJ (i.e., synaptic speed vs synaptic strengttefining the
there areM clusters, each consisting 8F/M fully synchro-  egions of existence fol-cluster states. Here we chooséx)=x

nized neurons, with a nonzero phase difference between eaghq all other parameters as in Fig. 2. Note the coexistence of states.
cluster. We might more properly call this a splay-cluster state

as we would expect the phase difference between any two

groups to be an integer multiple of72M. Note that we may Iagf);u;rllr;ihIr??n?%rﬁr?éﬁifoﬁi? ae 1?:1 I Ite0 ctrr]gittmir?f: nLthcm thaen
also interpret the HLC as a 1-cluster state. 9 9 ) : 9

First let us consider the construction of a globally Syr]_ldentlcal argument as for the 1-cluster state we obtain a con-

chronous statéa single cluster If a cluster is released from dition on a=a(M) as

inhibition and makes a transition from the left to right branch

then inhibition is immediately reinstated. The cluster evolves aM) < ———.
on the right-hand branch until it jumps back to the left on AL(=JIM) +Ag
reachingwg. By assumption it is still in the inhibited state _

and will evolve on the left-hand branch until it is releasedMoreover,.smce we have agsumed that only one cluster can
from inhibition (when the synapse turns pfHence, the con- make the jump from left to right branch we also have that
dition for the existence of such a solution is that the value of

(16)

w at the jump from left to right branches be lower than the a(M) > M-1 ) (17)
minimum value of thev nullcline without inhibition(when A (=JIM) + Ag

J=0). The period of oscillation is simply the duration of the ) N

synapsex?, so that a critical value ofr may be defined in In Fig. 3 we plot these critical curves fdi=1,...,5 as a

terms of the minimum period of oscillation. This minimum function of the Strength of inhibition. We see that for small
period is simply the time spent on the left and right brancheg¢slow synapsesthere is a critical value of above which a
when the Jump|ng off pointfrom left to r|ght branch@sis 1'C|U3ter(HLC) state can be found. Moreover, with increas-
equal tow,. Since the dynamics faw is piecewise linear itis iNg J one sees windows af values whereM-cluster states

a simple matter to calculate these times and obtain a condgan exist. From this figure it is also apparent that there is

tion on @ asa< 1/(A(-J)+Ag) where co-existence of cluster states. For example Wity we see
that it is possible to find a region af values where there is
_1 (A rw co-existence of tht=1 andM =2 states. Moreover with an
Ag=—logl ——— |, 14 . . o ; X )
Y1 AL — YW increase inJ ande it is possible to find a region of parameter

space wheré=2 andM =3 can coexist. A further increase
Ao(D) = vy in « Ieaves_onIyM:B as a possibility, _and with a large
(|)|09 Aol — oy ) (15) enough choice ofr no clusters are possible. Note that the
Yo Yol HFP is a trivial solution that exists for alt and J. Direct
Now let us turn our attention to av-cluster state. In such a numerical simulations of a Hodgkin-Huxley network are
state we may imagine that there is a phase relationship bdound to be consistent with the qualitative predictions of this
tween clusters such that at any given time there is a constaanalysis. Quantitative predictions are not expected as our
level of inhibition given byl =-J/M (apart from the times of theory has been developed in the singular lifit— 0),
measurezero where transitions ogclio maintain this con- which does not hold for the standard parameter set of the
stant level requires that just before release from inhibition alHodgkin Huxley modekgiven in the Appendix However,
M clusters evolve on the left-hand branch. A single clustem@an increasing quantitative agreement between theory and nu-
then evolves on the right hand branch and makes a transitiomerics is obtained with agartificial) decrease in the capaci-
back to the left-hand branch before inhibition terminates. Intance of the Hodgkin-Huxley model, as expected. In Fig. 4
this way there are agail clusters on the left-hand branch we show simulations oN=120 Hodgkin-Huxley neurons,
(each feeling an inhibition of 3/M) when the next cluster illustrating the coexistence of a 1-cluster and 2-cluster state.
makes a transition to the right-hand branch. The total periodVith an increase in the strength of inhibitidrand choosing
of oscillation is simplyM multiples of the duration of syn- a faster synapse it is possible to find a coexisting 2-cluster

Al =
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(@ 100 125 150 175 200 — v,

[ FIG. 6. (Color onling Response of an IFB neuron to a hyper-
vol polarizing current step. Note that upon release from inhibition there
L is a post inhibitory rebound response consisting béiestof spikes.

80 f ; ‘ . Herevgs denotes the steady state of the neuron.
100 125 150 175 200
(b) t

depolarized (above roughly —-60 my the low-threshold
C&* current inactivates with a time constant-e20 ms. In

FIG. 4. (Color onling Direct numerical simulations of a net- g o ation, further depolarization of sufficient magnitude

work of N=120 Hodgkin-Huxley neurons, showing the coexistence, . . . . e -
of a 1-clustertop) and a 2-clustefbottom) state fora=0.1 andJ will evoke a train of action potentiald@onic firing) that is

=20. In the top trace all of the neurons in the globally coupledmdependent ofr. However, when a relay neuron is hyper-

network synchronize. In the bottom figufeith a different set of polarized (below roughly —65 mY, the low-threshold cur-

initial conditiong the network splits into two equally sized clusters r(_ant dg-mactwates W'th. a .t'm.e constantpthO ms. _In Fh!s

that oscillate in antiphase. situation release from |_r1h!b|t|on results in a post inhibitory
rebound response consisting of an LTS and a cluster of 2—10

pikes. A minimal model of this process has been developed

y Smithet al. [20] based around intracellular recordings of

relay neuron responses to sinusoidal current injection. This

minimal “integrate-and-fire-or-burst1FB) model was con-

'structed by adding a slow variablgepresenting the de-

inactivation level ofl1) to a classical leaky integrate-and-fire

(IF) neuron model21] and is able to quantitatively repro-
duces salient features of relay neuron response properties in

Ill. A REBOUND CURRENT both burst and tonic modgg0,22.
The response properties of thalamocortical relay neurons In more detail the IFB model is given by
are greatly influenced by a low-threshold, transiert'@an-

and 3-cluster state, as predicted from the trend seen in Fig. %
This is illustrated in Fig. 5.

In the next section we turn to a different mechanism of
post inhibitory rebound that relies on a novel ionic current
not present in the Hodgkin-Huxley model.

ductance known as$;. When this conductance is evoked, Cv=-0w-v)-grlv-vPhO@w-vy +1, (18
Cé&* entering the neuron via T-type €achannels causes a

large voltage depolarization known as the low-threshold _ =N U = vp, 19
Ca&* spike (LTS). Conventional action potentials mediated - A-hi7 v<ovp. (19)

by fast Nd and K' (delayed-rectifier currents often ride on ) . _ _ .
the crest of an LTS resulting infaurstresponséi.e., a tight ~ The voltage variable is subject to reset, fing: v(T"+0)
cluster of spikes When a thalamocortical relay neuron is =Ureset and refractoriness

T "=inf{t p() = vy ; t=T" 1+ 75}, (20)
v O J\ wherewv, is the firing threshold andg is recognized as an
[ T/ absolute refractory period. Herg, is a constant leakage
-120 /\/ . /\/ . ] conductance and, the leakage reversal potential. The low-
100 125 150 175 200 threshold Cé_" current is given byIngT(vaT)_hG)(v—vh).
(@) The slow variabld represents the de-inactivation of the low-
threshold C& conductance. All parameter values for the IFB
v 0 I model may be found in the Appendix. An example of the
I response of this model neuron to an inhibitory step input is
T Ve Vel Yo shown in Fig. 6. This nicely illustrates the sort of rebound
-120 : - — response that can be elicited upon release from inhibition.
b) 100 125 15to 175 200 Such a response can only occur if the duration of inhibition
is sufficiently long and its strength sufficiently great.
FIG. 5. (Color onling Direct numerical simulations of a net-  ONCe again we wish to probe the conditions for a network

work of N=120 Hodgkin-Huxley neurons, showing the coexistenceOf neurons to support clustered states, using straightforward
of a 2-cluster(top) and a 3-cluste(bottom) state fore=1.25 and Mathematical analysis. Since IFB neurons possess an ideal-
J=200. In the top figure the network has split into two clusters thatized version of the slow T-type calcium current such an
oscillate in antiphase. In the bottom figure the network has split intcanalysis naturally complements existing numerical studies of
three equal sized groups, such that the phase difference betweemore detailed biophysical networks. In particular we are
clusters is uniformly distributed on the circle. thinking of the work of Golomb and Rinz¢10], who inves-
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tigate cluster states with a mixture of numerical simulations 9 M
and Floquet theory. Although the networks they investigate Lu==> f(v), i=1,...M, (25)
are not ideally suited to a mathematical study, important Mic1

progress in this direction has been made by Rubin and Ter-

man [23]. These authors consider an idealized model of #/N€reu; now represents the dynamics of one element in a
neuron with a generic rebound current and show how a nets_,ynchromzed cluster. We shall fopus on t?e_ptartlcular case
work with global coupling may be analyzed using techniquedhat 7(t) is a so-called alpha-function(t)=a“te™, so that
from geometric singular perturbation theory. Although we B 12

have had success with a geometric approach in the last sec- L=(1+a"3)" (26)
tion we shall now show how the IFB model is exactly
soluble, under some reasonable assumptions, so that we
not have to work in some singular limit. In fact we will
explicitly construct cluster states in the limit of slow synaptic + . -
responses. However, unlike the last section we will be able t ebound thresholdy, A, and the time spent above the firing

work with both shunts and an arbitrary shape for the postsyn- resholdvy, A, _For convenience we choose an origin of

aptic conductance. time such that att=0v crosse_:zzh_from bglow. Assuming that
For postsynaptic currents of the forih0) and(11) which only_ the most re_cent burs_t is influential the HLC takes the

are determined in terms of a set of spike times, there is gxphcn form u(t) =gQ(t, min(t, A )/ 7, where

simple way to swap to a firing rate description if the synaptic a

interactions are slow. Since this is already a necessary coipt, a) :f pt=t)dt'=e [ 1 +a(t-a)] - e 1 +at],

dition for post inhibitory rebound within the IFB framework 0

we work under this assumption and write the synaptic con- 27)

ductance at théth neuron in a globally coupled network as

é\(/)e first consider the construction of the HLC. This can be
one by considering a closed orbit of periadand param-

eterizing the solution in terms df, the time spent above the

and
N o]
1 I ! ! _— -
L= 52 [ )t t)dr. (21) he ! O<t<A*
i=1Jo o ) .
h(t) = he—A+/The—(t—A ), (28)

A more detailed discussion of the derivation of this model (A +

; ) ) . — g (=A%) AT <t<A,
can be found if24], suffice to say thaf(v) is to be inter- t1-e "
preted as the firing rate of an IFB neuron andv(h;,u) is  \ith

the steady state of thigh presynaptic neuron given by
1- e—(A—A*)/rg

h= : 29
o(h.u) = g + grurhs+ g . 22) 1 - A TN, (29

gL +grhs+ggu

. . : , Note that outside their natural domains we periodically ex-
The variables is a switch such that=1 if v(h,u) crosses,  ong u(t) andh(t). The three unknownd,A*,A, may then

from below ands=0 if v crossew, from above. If the firing  pe found by the simultaneous solution of the three equations
rate is dominated by the refractory mechanism then it I$(A)=vy v(AM)=vp, and v(A)=v,(A>A%). Here, v(t)

natural t_o t_ake t_he instantaneous firing ratef@szrgl(v =u(h(t),u(t)) using(22) ands=1 for t e [0,A*] and is zero
~vy). Itis in this case that the model admits to an exactyenyise. In Fig. 7 we plot the results of such a calculation.
solution. This compares extremely well with results obtained from

Generalizing the choice of section Il we shall consider thegirect numerical simulation. In Fig. 8 we show a plot of
case thaty is the Green’s function of a differential operator activity for a network of sizeN=100, which illustrates the
L: rapid approach of random initial data to the HIl{r the
same parameters as in Fig. Figure 9 shows the time evo-
Ly(t) = gso(t). (23 lution of just one of the neurons in the network.
Further numerical simulations of this model with varying
The equations of motion for the conductances then take the andgs show that the three most common attractors seem to
differential form be the HFP, HLC, and 2-cluster state. This is not to say that
larger M-cluster states do not exist or are not stable, but
9 rather that they may have relatively small basins of attrac-
Lu == f(v)). (24 tion. This observation has already been made by Golomb and
N7 Rinzel in their studies of more detailed biophysical networks
(with slow T-type calcium currenfsSo although it is easy to
The HFP of the system is given by=gsf(v) with h=0, generalize the calculation of the HLC to M-cluster splay
while the HLC satisfiesLu(t)=gf(v(t)). More general states by writingu;(t)=u(t—iA/M) for i=0,... M-1 with
M-cluster splay states are described by h(t) given by(28) and
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FIG. 9. (Color onling Voltage trace for one of the neurons in
Fig. 8, showing good asymptotic agreement with the analytically
0.2 r 1 calculated orbit of Fig. 7.

-100 -60 20 20

@ To establish the stability of th®l-cluster states one could
v

pursue the approach of Golomb and RingBD] and apply
Floquet theory. Indeed having the periodic orbits in closed
106 form is an added bonus for such an approach, as in many
models they would only be available numerically. However,
105 we make the important observation that M-cluster states
h come in pairs, with solutions annihilating in a saddle-node
bifurcation under variation of system parameters. Hence, by
tracking around these saddle-node bifurcations in parameter
space we may determine the existence regions for stable
| o M-cluster states. Within these regions a stable and unstable
-100 —— : i : ’ M-cluster state would co-exist. The result of such a calcula-
) 0 100t 200 tion is shown in Fig. 12. This clearly highlights the fact that
for slow synapses and sufficiently strong coupling the
FIG. 7. (Color onling A plot of the explicit HLC solution with (stabl_e HFP, HLC, and 2-cluster state can coexist. With in-
@=0.05, gs=2.0, andvs=-100. For these parameters we fiad ~Creasinga the system can no longer support a HLC and
=112.9,A*=26.4, andA,=11.5. prefers a 2-cluster state, although with further increase in
only the HFP is found. The borders of existence were found
to agree extremely well with direct numerical simulations,
although in practice is was hard to find examp{starting
from random initial datpof a 2-cluster state coexisting with

104

103

M-1
1
ut) = =S Qt—kA/M, min(t - kAM,A,), (30)
M 7r k=0

a HLC.
we shall only focus on the cadé=2 for the above reason.
As before solutions are determined in a self-consistent fash- IV. DISCUSSION
. . _ +) — -
ion by demanding(A)=vy, v(A")=vy andv(A)=vy. A plot In this paper we have considered clustering in globally

of a 2-cluster state is shown in Fig. 10. Once again there i3, pled networks of nonoscillatory neurons with inhibitory
excellent agreement with direct numerical simulationsgynaptic connections. A generic mechanism for the genera-
which we illustrate with the aid of Fig. 11. tion of such rhythms is that of postinhibitory rebound. To
distinguish between the effects of anode break excitation and
rebound currents we have analyzed a mathematically trac-

1000
table neuron model from each of these two classes. For an-
0
T
i 20 f
m
C
v 40
-60
\ \ \ \
0 , -80 t . .
0 50 100 0 40 80 120 160

t
FIG. 8. (Color onling A plot of the voltage for a network of
N=100 neurons. Bright colors denote high activity and dull colors FIG. 10. (Color onling A plot of the 2-cluster state witlw
low activity. All parameters as in Fig. 7. Note the rapid approach to=0.1. Other parameters as in Fig. 7. For these parameters we find
a HLC from random initial data. A=99.1,A*=53.7, andA ,=6.4.
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FIG. 11. (Color onling A plot of the voltage for two neurons in 0.06 |
a network ofN=100 neurons. All parameters as in Fig. 10. Note the HLC
. L 0.03
rapid approach to a 2-cluster state from random initial data, show-
ing good asymptotic agreement with the analytically calculated or- S~ s
bit shown in Fig. 10. 0 0.5 1 1.5 2

S

ode break excitation we considered a reduction of the FIG. 12. (Color onling Parameter borders encompassing re-
Hodgkin-Huxley model to a form that we have identified as9ions of stable HLC and 2-cluster states in taegy) plane. Other

a modified McKean model. Analysis of cluster states wadlarameters as in Fig. 7. Note that the HFP is stable everywhere.
performed in some singular limjtvhere there is a separation

of time scales Regions for the existence of splay cluster states. It remains an open problem to extend the techniques
states as a function of synaptic speed and strength wef this paper to heterogeneous systems.

found to be in good qualitative agreement with the full

Hodgkin-Huxley modelaway from the singular limjt The ACKNOWLEDGMENTS

main conclusion being that slow synapses and weak coupling
(above some cut-offfavor small numbers of clusters, while
an increase in speed and strength favors larger numbers
clusters. For the analysis of a neuron with an explicit ionic
rebound current we chose the IFB model. For the case of APPENDIX

slow synapses and a firing rate response dominated by a gq, the Hodgkin-Huxley mode the six functiong(v) and
refractory process we have shown how to construct splay(w(v)' X e {m,n,h}, are obtained from fits with experimental
clgster states_ for a.broaq class of synaptl_c shunting mOdeIE'ata. It is common practice to write
Direct numerical simulations show that, in contrast to the

mechanism of anode break excitation, either a coherent glo- 1

bal oscillation or an antiphase rhythm is preferred. One ma- () = m1 X.(v) = ax(v)7x(v), (A1)
jor similarity between the two mechanisms is that the single X X

cluster state is generated for very slow synap$essome for X e{m,n,h} where

sufficiently strong coupling Although, for simplicity, we

S.C. was financially supported by the EPSRC through
Grant No. GR/R76219.

have focused on the construction of the most symmetric clus- ap(v) = 0.1(v +40) , (A2)

ter stateqsplay clusterg the techniques we have described 1-exd-0.1v +40)]

are ideally suited for the study of less symmetric states and

even partially clustered states. Because of the underlying ap(v) =0.07 expp- 0.05v + 65)], (A3)

simplicity of the models we have developed it is also pos-

sible to pass over to the case of structured interactions. The 0.01(v + 55)

results of such an analysis will be presented elsewhere. an(v) = : (A4)
For both mechanisms it is also an interesting issue as to 1-exg-0.1v+55)]

whether cluster states are robust to noise. For networks uti-

lizing anode break excitation as the means to generate Bm(v) = 4.0 exp— 0.0556v + 65)], (A5)

rhythms this has been explored in a previous pdpRéi.

Here it was shown that the effect of weak additive Gaussian 3 1

noise is basically twofold(i) causing a neuron to switch Pilv) = 1+exg-0.1v +35)]" (AB)

between different clusters, aiiil) causing the whole system

to switch between different cluster states if the system is B.(v) = 0.125 exp- 0.012%v + 65)]. (A7)

inside a multistable regime. Moreover, for large networks

and moderate noise, it is possible for the system to supportAll potentials are measured in mV, all times in ms and all
form of coherence resonand@6] (whereby a rhythm is currents inuA per cnf. We use the following parameter val-
noise induced and would be absent without npiSimilar  ues: u=1 uF cn?, g, =0.3, g«=36, gna=120, V| =-54.402,
effects have been observed in model networks with a slow/y =-77, andVy,=50.

T-type calcium currenitl0,27. In an extension of their origi- For the IFB model we use the parameter set
nal work on clustering, Golomb and Rinzg8] have also =-35mV, C=0.2uF/cn?, @ =0.0354 MS/cM  vyeset
numerically explored the issue of heterogeneity and foung-50 mV, v,=-70 mV, 7,=20ms, 7,=100 ms, gr
both partially synchronized and partially antisynchronized=0.07 mS/cm, v+=120 mV, andrz=5 ms.
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